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Gradient Hydroxyapatite Chromatography with Small
Sample Loads. V. Effect of the Top of the Column

TSUTOMU KAWASAKI

LABORATOIRE DE GENETIQUE MOLECULAIRE
INSTITUT DE RECHERCHE EN BIOLOGIE MOLECULAIRE
FACULTE DES SCIENCES

PARIS §, FRANCE

Abstract

The earlier theory of gradient hydroxyapatite chromatography with small sample
loads is further developed by taking into account the effect of the top of the column.
The ambiguity in the theory occurring when the value of the parameter s is extremely
small is eliminated. The resolving power of the column is discussed at the limit when
the slope of the gradient tends to zero.

INTRODUCTION

In earlier papers (/-4) a theory of gradient chromatography on hydroxy-
apatite (HA) columns was developed for the case of small sample loads when
a narrow band of molecules is formed initially at the top of the column. The
process of chromatography is virtually a quasi-static process; a thermo-
dynamic equilibrium is locally realized within any elementary volume, dV, in
the column at any instant ¢ (/). In the quasi-static process, longitudinal
diffusions of both sample molecules and competing ions can be assumed to
occur, caused essentially only by the local heterogeneity in the flow rate
occurring in the column; the ions constitute a linear molarity gradient in the
column (7). However, the molarity gradient itself is not disturbed by diffusion
since the diffusion effect is canceled out among different parts of the gradient
(1, 3).

The gradient chromatographic process is indescribable on the basis of a
continuity equation for the actual molecular flux occurring in the column (3).
In order to describe this process it is necessary to stand on a new point of
view. From this point of view [called the second point of view on gradient
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chromatography (3)] it is not the column but rather the molarity gradient of
competing ions (actually migrating on the column) that a priori is fixed, and
this latter is considered as a medium through which migrates a molecular flux
(3). In contrast to the actual flux in the column, this flux is only endowed with
an abstract meaning since molarity m of the ions chromatographically
represents a “force” that drives sample molecules out of the crystal surfaces
of HA [through a competition mechanism; see Ref. / (Appendix 1) and Ref. 3 ].
In other words, the latter flux migrates in an “‘intensive space” of the ‘“‘force”
(3). Further, the abstract flux is different from the actual flux in that the
density C of the former corresponds to the concentration of molecules in the
interstitial liqguid in the column (i.e., the mobile phase) whereas the density
Q) of the latter represents the molecular density in the interstices, including
the crystal surfaces, in the column [i.e., both mobile and stationary phases
3l

In Ref. 3 a continuity equation for the abstract flux has been derived from
which a chromatogram can be calculated. This equation involves, as
variables, both ““position” m on the molarity gradient and parameter s which
is proportional to time ¢ provided the flow rate in the column is constant with
respect to ¢ (see Eq. 1). With gradient chromatography, the meaning of the
“chromatogram” is the distribution in concentration C of molecules in
solution that has just been eluted out of the column with length L, represented
as a function of molarity m of competing ions in the solution eluted at the
same time out of the column. m increases linearly with an increase in elution
volume V (with linear gradient chromatography), and V is proportional to
time ¢ provided the flow rate is constant with respect to {. This means that m
increases linearly with t. It can now be understood that two steps are
involved in the process of the calculation of the chromatogram starting from
the abstract continuity equation. Thus, in the first step, a solution, C(s, m), of
the abstract continuity equation is obtained under a suitable initial condition.
In this step, based on the second point of vicw (see above), the solution
C(s, m) only has an abstract meaning. In the second step a transfer is made
from the second point of view to another, called the first point of view. From
this point of view it is the column itself, and not the molarity gradient of the
ions, that a priori is fixed (3). By this transfer of the point of view the
meaning of time (relatively speaking) that was given to s (see above) is
translated into a meaning of the product of length L of the column and slope g
of the molarity gradient (eq. 2). Since g is constant with linear gradient
chromatography, it can now be considered that s represents the length of the
column (relatively speaking); it is m that increases with time t. Thus the
meaning of a chromatogram is given to C(s, m) (for details, see Ref. 3).

The point of argument in the present paper is concerned with the initial
boundary condition to the abstract continuity equation. In the earlier theory
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(1-4), an assumption was introduced that the initial boundary condition can
be given (a) replacing the actual column by a hypothetical column with
infinite length that extends upward beyond the top of the column (cf. Remark
1 below), and (b) representing the initial narrow band of molecules occurring
at the top of the column in terms of a delta function that has a value only at a
longitudinal position, L = 0, on the infinite column. Under this assumption,
however, an unreasonable conclusion is attained that, when the value of the
parameter s (see above and Eq. 2) is extremely small, the left-hand part of the
chromatogram should, in general, be eluted out of the column even before the
application of the gradient. This occurs independently of whether or not
rinsing the column is made between the sample load and the application of
the gradient by using the initial solvent [ (4); cf. Remark 2 below]. In Ref. 4 a
limit in the theory occurring in this extreme experimental condition was
discussed. Further, the experimental chromatograms, in general, are slightly
asymmetrical, with a slower decrease in height on the right-hand side of the
pattern than on the other side. On the other hand, with theoretical chromato-
grams obtained under the assumption of the delta function occurring initially
on the infinite column (see above), it is on the left-hand side of the pattern
that the height decreases more slowly, although the difference in rates of
decrease in height between the two sides of the chromatographic peak is
extremely small, and the peak is almost symmetrical (2, 4). In Ref. 2 it was
suggested that this slight difference between the theoretical and experimental
results also arise from the introduction of the delta-function.

In an earlier paper (5) a theory of stepwise elution chromatography was
developed in which account was taken of the existence of the top of the
column. It can, in general, be assumed (5) that thermal Brownian diffusion of
molecules in the interstitial liquid in the column occurs only in association
with a diffusion that is provoked by a type |called the second type (5)] of flow
heterogeneity. The effect of the column top is conceivable only in terms of the
effect of Brownian diffusion plus diffusion due to the second type of flow
heterogeneity (called, hereafter, B-dif. plus STFH-dif.) occurring near the
top of the column (5). In both the present and the subsequent paper (6) this
consideration of stepwise chromatography is applied with modifications to
gradient chromatography.

In the present paper only the extreme case when the B-dif. plus STFH-dif.
effect tends to zero is treated. Under this situation, longitudinal diffusion in
the column is limited to a diffusion occurring, and caused by another type
(called as the first type) of flow heterogeneity (5), which is identical with the
flow heterogeneity considered in the earlier theory of gradient chroma-
tography [(/-4); cf. Remark 3 below]. Thus, instead of the infinitesimal
molecular band occurring at positon L = 0 on the infinite column which is
represented by using a delta-function (/-4), an infinitesimal band occurring
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at the rop of the column is considered. This latter is conceivable only in terms
of an extreme case when B-dif. plus STFH-dif. tends to zero at the column
top. A similar consideration for stepwise chromatography was made in Ref.
5, Theoretical Section E. A conclusion is derived that the shape of the
chromatogram calculated from the present theory is identical with that
obtained earlier (/-3). However, the ambiguity in the earlier theory (/-4)
occurring in extremely small s values (see above), is eliminated. Chromato-
graphic resolution R, occurring at the limit when the slope g of the molarity
gradient tends to zero, is also discussed (Theoretical Section C).

In the subsequent theory (6), account is taken of the finite effect of B-dif.
plus STFH-dif. Theoretical chromatograms with slightly asymmetrical
shapes, similar to those obtained experimentally (see above), can be cal-
culated (6). For this purpose, however, it is first necessary to reduce the
fundamental continuity equation (Eq. 1) to a simpler form (6).

Remark (1). In Refs. I-4 the statement that the hypothetical column
extends upward beyond the top is made only implicitly, however. The
hypothetical column also extends downward beyond the bottom of the actual
column. With the quasi-static chromatographic process (see aboe), it can, in
general, be assumed (/) that density C of sample molecules and molarity m
of competing ions in solution that has just been eluted out of the bottom of the
column with length L are equal to the density and the molarity in the
interstitial liquid that has just passed the longitudinal positon L in the infinite
column, respectively. This assumption is necessary in order for C(s, m) that
has been calculated from the abstract continuity equation to have meaning
for the chromatogram (I, 3). The assumption is applicable to some wider
cases (5, 6).

Remark (2). Since s =gL (Eq. 2), s can be small when either g or L is
small. However, from the structure of the fundamental continuity equation
(Eq. 1), it can be understood that the unreasonable theoretical result mainly
arises from the small L value. Thus, in Eq. (1), the diffusion parameter 6, is
involved within the term gfy/B(s, m), which constitutes as a whole the
apparent diffusion coefficient. When g is small, gf/B(s, m) is also small and
diffusion decreases. This prevents the leak of molecules out of the beginning
of the gradient.

Remark (3). In the theory in Refs. /-4 the effect of the second type of flow
heterogeneity a priori is neglected. This procedure is necessary in order for
the initial boundary condition of the fundamental continuity equation (Eq. 1)
to be represnted in terms of a delta function (i.e., for the initial molecular
band on the column, in fact, to have an infinitesimal width). Some comment
on this problem is made in Remark 2 in Ref. 5, Theoretical Section A. The
assumption of a quasi-static chromatographic process, in which longitudinal
thermal Brownian diffusion is negligible in comparison with diffusion due to
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the total flow heterogeneity (see above), arises from the experimental fact
that virtually no deformation of the chromatogram or the change in elution

position occurs when the flow rate is changed (/). Even though a finite effect
of B-dif. plus STFH-if. is actually occurring, the assumption of the quasi-
static process is valid provided that, for the B-dif. plus STFH-dif. effect, it is
the second type of flow heterogeniety that plays a major role (cf. Discussion
Section in Ref. 6).

THEORETICAL

A. Some Consideration on the Earlier Theory (1-4):
A Specification of the Initial Boundary Condition to the
Fundamental Continuity Equation

The fundamental continuity equation for the abstract molecular flux
obtained earlier (Eq. 17 in Ref. 3; see Introduction Section) can be written as

—_—
. 1 — B(s, m) gb, C oC
div,, C - grad,—| +—=0 (1)
B(s, m) B(s, m) B(s, m) os

where m = mean molarity of competing ions in solution within a vertical
section of the column. By connection m occurring within respec-
tive column sections, the molarity gradient can be defined; this is
linear with linear gradient chromatography. However, the ab-
stract flux itself is a concept that belongs in the second point of
view on gradient chromatography (Introduction Section). From
this point of view, m simply represents the current coordinate
along which the abstract flux proceeds.

g = positive constant representing the slope of the linear gradient of
m. This is expressed as an increase in m per unit length of the
column, measured from the bottom to the top.

s = parameter with a dimension of molarity. From the first point of
view on gradient chromatography (Introduction Section), this can
be defined as

s =gL (2)

where L represents the length of the column. From the second
point of view (i.e., in the abstract flux itself), however, s is a
variable that increases with time ¢; s is proportional to ¢ provided
the flow rate is constant with respect to . Therefore, provided g is
given, fixing time ¢ in the abstract flux (second point of view)
means fixing length L of the column (first point of view).
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C = mean concentration of sample molecules in solution in a vertical
section of the column. From the first point of view, C represents
the molecular density in solution that has just passed a given
logitudinal position L on the infinite column. This can be
assumed to be identical with the molecular density in solution
that has just been eluted out of the column with length L (see
Remark (1) in the Introduction Section). This means that, when
both L and g are given, C represents a chromatogram as a
function of m. From the second point of view, however, C simply
represents the molecular density in the abstract flux occurring at
“position” m at “‘time”’ s.

0, = positive constant with a dimension of length that measures
longitudinal diffusion provoked by the first type of flow hetero-
geneity in the column.

B(s, m) = ratio of the amount of molecules existing in the interstitial liquid
to the total amount in a vertical column section, i.e., partition of
molecules in solution.

The function B(s, m) is represented as
B(s, m) = B,[m\(s, m)] (3)
where the function By(m,) is defined by Eq. (A-1) in Ref. /, Appendix I, as

1

B\(m),) = — (4)
A( )\) 1 +q((/)’m\+ 1) X
in which
q = ﬁre.\'e/k'l' (5)
The function m (s, m) is implicitly defined as
m=my+r(m—s (6)
where
"\ By(m))
’(mx)=f ——dm, (7)
Min 1 — B,(m))

The physical meanings of the symbols involved in Eqs. (3)-(7) are sum-
marized below:
m;, = initial molarity of competing ions at the beginning of the
molarity gradient introduced at the top of the column.
m(s, m)=local molarity of competing ions in solution occurring in an
infinitesimal part of the vertical column section. Based on the
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second point of view, the value of m, is determined when both
“time” s and “‘position” m on the molarity gradient are
given, “‘position’” m corresponding to the mean molarity of the
ions in the column section.

B,(m,) = partition of molecules in solution occurring locally in the
infinitesimal part of the column section where the molarity of
competing ions is m,. Equation (3) shows that the mean
partition B is equal to the local partition B,. This apparently
occurs on the basis of the hypothesis that the effect of B-dif.
plus STFH-dif. should be canceled within the molecular band
migrating on the column. Arguing in the other direction, this is
the reason why the B-dif. plus STFH-dIif. effect, in fact, is
finally negligible. [See the argument in Ref. 3, Theoretical
Section, where thermodynamic diffusion (identical with
Brownian diffusion) is considered instead of B-dif. plus STFH-
dif. This argument is valid, however; cf. Remark 3 in the
Introduction Section and Remark 2 in Ref. 5, Section A].
Equation (4) shows that B, increases monotonically with an
increase of m,, tending to unity when m, tends to infinity.

@ = positive constant representing the property of competing ions.

p = positive constant representing the property of the column.

x' = average number (in the equilibrium state) of adsorbing sites of

HA on which the adsorption of competing ions is impossible

due to the presence of an adsorbed molecule. x’, therefore,

represents the effective dimensions of the sample molecule.
x = average number (in the equilibrium state) of functional groups
per molecule that react with sites of HA.

—¢ (¢ > 0) = adsorption energy of a functional group of the molecule onto
one of the sites of HA. —xe therefore represents the energy per
molecule on the HA surface.

v = number of effective geometrical configuration(s) of a molecule
on the HA surface (in the equilibrium state). Therefore

Q= —kT(lng—Inp)=—xe—kTInt (8)

l

represents the free energy per molecule on the HA surface
(neglecting a solvent effect).

In Ref. 3 the initial boundary condition to Eq. (1) was represented by using
a delta-function as

lim Q= 8(m ~m,) 9
s—+0
m\=min
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(see Eq. 74 in Ref. 3) where
Q=C/B (10)

represents the total molecular density in the interstices, including the crystal
surfaces, of a vertical column section. Equation (9) symbolically represents
the situation occurring at time 0 when both relationships s = 0 and m, = m,
are fulilled at position L. = 0 of the infinite column on which the ion molarity
m is extending in an infinite range of [—2, <] (cf. Remark below). However,
if £ is considered as a function of s and r (Eq. 7), Eq. (9) should be rewritten
as

Q(s = +0,r)y=404(r) (11)

since Eq. (6) shows that, both when s = 0 and my, =m = m,, then r = 0.
Under the boundary condition given by Eq. (9) or (11), Eq. (1) has a solution

Irlmats, m)]~s/2

1
C=—c WO By(maGs, m)] (12)

Vv anglos
(cf. Eq. 62 in Ref. 3).
Now, by using Egs. (6) and (7), Eq. (12) can be rewritten as
(r—s)?

0 1 -
c[ m ] dmy = e % a (13)
omyd 47gf s

(cf. Eq. 79 in Ref. 3). As long as s is fixed, Eq. (13) can further be rewritten
as

(rs)?

1
p——— 4
Vangl s

On the other hand, by using Egs. (3), (10), and (12),

4g8gs

Cdm = dr (14)

_r=s)?
Q 1 4gfqs s
- 4
vamghos (1)

is derived. It can be verified that Eq. (15), in fact, fulfulls Eq. (11). By using
Eq. (15), Eq. (14) can be rewritten as
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o]
cC=Q (16)

om 1.

This means that the boundary condition (Eq. 9 or 11) to Eq. (1) can finally
be specified as

C(s =40, m)=8(m —m,) (17)

Remark. Therefore, m,is also extended in the range of [—, «]. Equation
(4) only defines the actual B, occurring when m, = m;,. The hypothetical B,
occurring when m, < m;,, can be defined, for instance by Eq. (76) in Ref. 3,
as

1
By(m)) = . (4a)
1+ ge ™ 9"
r is now extended in the infinite range of [—, =] that corresponds to the
range [—, «| for m, and m (see Eqs. 7 and 11-16).

B. Effect of the Top of the Column*

From its mechanism, it can be assumed that the first type of flow
heterogeneity cannot occur near the top of the column (see Ref. 5,
Theoretical Section D). It can also be asumed (5) that, within the small width

AL = 48, (18)

at the column top (where the effect of the first type of flow heterogeneity is
negligible), molecules migrate virtually at random, receiving the B-dif. plus
STFH-dif. effect. 8, with a dimension of length, is a positive constant
measuring this effect (5). As with the derivation of Eq. (17) or (17') in Ref. 5§
for stepwise chromatography, let us consider the case when the width in the
initial molecular band occurring at the column top is smaller than, or equal
to, the critical width AL, and further when the partition B (Eq. 3) of
molecules in solution occurring in any column section within AL is very
small. This latter is a necessary condition for molecules to be initially
retained on the column (c¢f. Remark in Ref. 5, Numerical Calculations of
Idealized Chromatography in the Absence of the First Type of Flow
Heterogeneity and Discussion Section). Under this situation a much larger
volume of the solvent than the total interstitial volumes

AL’ = aAL (19)

*The consideration made in this section partially originates in the considerations made in both
Ref. 7 and Appendix II in Ref. 8.
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within AL (where « represents the pore volume per unit length of the column)
would pass AL while (almost) all molecules are eluted out of AL (5). This
would mean that the amount of molecules that are eluted out of AL while a
volume AL’ of the solvent passes is virtually equal to the mean amount of
molecules that stay in the mobile phase in AL during this time interval (5).
This hypothesis can be represented in terms of a differential equation

- _.dx_. =C = __B(_m)_. X (20)

d(V/AL’) 1 — B(m)

where V is the elution volume. C is defined here as the total amount of
molecules existing in the interstitial liquid in AL . However, we represent C in
such a unit that it is numerically equal to the molecular concentration in
solution occurring at longitudinal position L. = AL on the column (i.e., the
position the distance AL apart from the top). At positions L > AL, C is
always defined as the molecular concentration in the interstitial liquid in the
column. This definition is applied to C in Eq. (1). x represents the total
amount of molecules existing on the crystal surfaces in AL. As with C,
however, x also represents the molecular density on the crystal surfaces at
position L = AL. Finally, B(m) represents the partition of molecules in
solution occurring in AL. This is equal to B(s, m) (Eq. 3) occurring in the
infinitesimal column section at position L = AL. From the second equality
in Eq. (20) and Eq. (10), a general relationship among the three quantities Q,
C, and x,

Q=C+y (21)

can be obtained. (It is possible to add x, the meaning of the molecular density
on the crystal surfaces at column positions L > AL. It is also possible to add
Q, the extensive meaning of the total amount of molecules in AL.)

In comparison with Eq. (17) in Ref. 5 for stepwise chromatography in
which it is 2 that changes with V/AL’, in Eq. (20) above it is x that changes.
(although actually x = Q2; see above). This is due to the fact that, with gradient
chromatography, it is x, and not €}, that decreases directly with an increase in
m which represents the “force” that drives molecules out of the crystal
surfaces (Introduction Section; see Ref. 3 Theoretical Section); I increases
with m (Introduction Section). In fact, since

dm/dV =gla (22)

(which gives a definition itself of g; see the explanation of Eq. 1), Eq. (20)
can be rewritten by using Eqs. (18) and (19) as
dx 1 B(m)

T dm  4g8, 1-Bm) X (23)
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It is Eq. (23) rather than Eq. (20) that has a fundamental physical meaning
(cf. Ref. 3, Theoretical Section).

Equation (23) can easily be integrated under a normalized conservation
conditon

wadm=l (24)

to give

1 1 m _ B(m) ]
X~ agh, exP[ 429, fm 1= Bm) " (25)

m

which can be rewritten as

_ 1 B(m) [_ 1 m  B(m) ]
C =gt 1-Bmm Pl T %a, fm. L= Bm) "

mn

(25"

On the other hand, from Eqgs. (3) and (7) and the equality between B(m) and
B(s, m) occurring when L = 48, (see above) or when s = 4g0, (Eq. 2), a

relationship
_fm B(m)
r= —————dm (26)
mn 1 — B(m)

is obtained. In Eq. (26) the expression r(m) for r should be avoided. In fact, if
we give B(m) the meaning of B(s, m) occurring when s = 4gf,, (see above),
then r should be written as r[my(s = 4gf,, m)] rather than r(m). This is
because r originally is defined by Eq (7), and m,, is a function of s and m (Eq
6). r in Eq. (26) is different from r(m, = m). Now, by using Eq. (26), Eq.
(25') can further be rewritten as

1 d -
C= [ s ] e %% (form = m )

4390 dm s=4gh (27)
and

cC=0 (form <m,)

where the second equality has been added only for convenience sake. Here,
let us introduce the hypothesis that the B-dif. plus STFH-dif. effect tends to
zero (Introduction Section). This means that § ,— +0. Under this situation,
Eq. (27) is identical with Eq. (17). Under the boundary condition given by
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Eq. (17), Eq. (1) has a solution of Eq. (12). According to the earlier theory
(1-4), Eq. (12) should represent a theoretical chromatogram with Eq. (6)
(see Introduction Section). Equation (12) (with Eq. 6) shows, however, that
when s is extremely small, the left-hand part of the chromatogram should be
eluted out of the column even before the application of the molarity gradient.
This is an unreasonable conclusion (see Introduction Section).

It should be emphasized, however, that it is the first equality in Eq. (27)
that involves the physical meaning. At the limit of #— +0, this represents the
infinitesimal molecular band occurring initially at the top of the column. It is
only by adding the second equality that Eq. (27) coincides with the delta
function (Eq. 17). An interpretation should now be introduced that, in Eq.
(12), it is the part m = m, of C that has the physical meaning; the other part,
m < m,, that formally occurs in Eq. (12) actually should occur at the
beginning, m = m;,, of the molarity gradient forming a sharp peak. This peak
gradually disappears in early stages of the development process. The
corresponding argument for stepwise chromatography was made in Ref, §
Theoretical Section E. In contrast to stepwise chromatography in which the
band at the column top keeps the infinitesimal width as long as it remains (see
Ref. 5§ Theoretical Section E), with gradient chromatography it can be
assumed that the width in the sharp peak at the beginning of the molarity
gradient (which initially was infinitesimal at the top of the column) increases
slightly with the development process. This occurs in association with
diffusion at the beginning of the gradient (3). However, the peak under
consideration actually survives only in the early stages of the development
process when the difussion at the beginning of the gradient has just begun.
Further, in these stages the total width in the chromatogram (in which is
involved, as part, the sharp peak) increases rapidly (cf. Fig. 1). As a result,
the width in the sharp peak at the beginning of the gradient can be considered
to be virtually infinitesimal.

C. Chromatographic Resolution, R,, at the Limit of g—+0

In Ref. 4 it was shown that, provided the molarity range over which a
chromatogram appears is small around the mean elution molarity u, Eqs.
(12) and (6) reduce to a single equation with a Gaussian form:

lm—=u(s)]?
1 262

C=—"e (28)
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FiG. 1. Recalculations of (some of) the ambiguous parts of both Figs. 1 and 2 in an earlier paper
(2) occurring when the length L of the column is small. The dependence of the standard
deviation, o(g+), of the theoretical chromatographic peak upon L is shown; the standard
deviation is represented in terms of the range of molarities of competing potassium ions over
which appears the peak, and &g+ is concerned with the part of the total chromatogram from
which the infinitesimal peak occurring at the beginning (m+)= mis+)) of the potassium
gradient is eliminated. ok *) is plotted for three different slopes, gk ), of the potassium molarity
gradient [1.18 X 1073 (—), 4.24 X 1074 (- -) and 3.53 X 107> (- =) M/cm] for three differ-
ent molecules with x’ = 7 and Ing = 6.7 (lysozyme model), withx’ = 70 and Ing = 100.3, and
with x’ = = and In ¢ = =. For the diffusion parameter 8, the best value, 0.3 cm, is used. For
any curve, o(x +) tends to zero when L tends to zero. For the three curves for x' = 70, however,
the decrease in o(k+, with a decrease of L occurs in such small values of L that this aspect
cannot explicitly be drawn in the figure. The three curves for x' = « are parabolas.
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where
|
1 , X't
u(s) = o {[(x' + Do'gs + (¢'mi, + 1)*7] = 1 (29)
and
\/’/23003 y e
o =————"= 205 {1 + qlo'u(s) + 1177} (30)
Byu(s)]

(see Eq. 4). Since the width (concerning m) in the chromatogram tends to
zero when s tends to zero (Section B), Eq. (28) should hold precisely for
extremely small s values. For small s values, Eq. (29) reduces to

gs
(¢'my, + 1)*

which shows that, when s =+0, then u—m,, + 0.

s tends to zero when either g or L tends to zero (Eq. 2; ¢f. Remark 2 in the
Introduction Section). We here consider the chromatographic resolution R,
occurring when g tends to zero and L is constant (for R, see Ref. 2). Under
this situation, the diffusion occurring at the beginning of the molarity gradient
(sec Section B) is negligible since, when g —+0, the volume of the solvent
over which a chromatogram appears is infinity. We also limit ourselves
within the case of a mixture of components “1” and “2” with the same
effective molecular dimensions x’ (for x', see the explanation of Egs. 3-7).
The resolution R, at the limit of g—+0 can be defined as

uis) = + my, (31)

' — !
limR, = lim ——2—F0 (32)
g—+0 g—=+0 2(0'“) + 0'(2))

where the two subscripts refer to the two components in the mixture (cf. Eq. 1
in Ref. 2). In the distribution C in Eq. (28), it is only the part m = m;, that
has physical meaning (see Section B). Equation (28) shows, however, that
when s tends to zero, then C tends to a delta function occurring at
m = p = m;, This means that, at the limit of s —+0, the total distribution C
in Eq. (28) coincides with its significant part m = m,; glirpo R, would, in fact,
be definable in terms of Eq. (32). Now by using Egs. (30) and (31) and
taking into account Eq. (2), Eq. (32) can be rewritten as

llm RS= _ IQ(Z)_q(l)’ \//'Z (33)

- + .
g—+0 /3200[_@_“2—%2L+ ((p’min+ 1)\]
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or as

\1 _q0m
lim R, = 9a) VI (33)
g—+0 q“)

|+ 4w
V326,

g (p'm;, + 1)°
(2) +

q)

Let us consider an extreme case when x'— and —Q,, /x’ = constant
(> 0;for Q,3), see Eq. 8). This means that the dimensions of any molecules in
the mixture are infinity, but that the free energy per unit molecular dimen-
sions on the HA surface is finite (i.e., not equal to zero), at least concerning
Component “2.” A proof is given below that, under this situation, a
relationship g 2,)>> (@'m, + 1)* is fulfilled. As a result, Eq. (33") reduces to

q
‘ - dm
im 8, = Tt 9
) gs‘FO[ 1+ ﬂ]
4.2

Proof: Since —Q(,) = = (see above), Component “2” is perfectly retained
at the top of the column at the beginning of chromatography where the
relationship m = m, is fulfilled. This verifies the fact that the mean elution
molarity u,, of Component ““2”" is higher than m;,. In other words, if s # 0,
then ) > my, it follows from this that (¢'u, + DY > (¢'my, + 1)~
Equation (29) reduces to (¢'u;y + 1) = qo5¢'x’ = gq(,), Where the second
approximate equality arises from the fact that g = Be~9*" (Eq. 8) and that
—Q = 0(x") (see above). This means that the factor s¢'x’ that is involved in
the intermediate term in the approximate equation (where x* = =) is virtually
equal to unity when s # 0. Hence the relationship g5, > (¢'m;, + 1)* is
obtained.

Practically, Eq. (34) gives a very good approximation for Eq. (33) or (33')
(cf. Fig. 2).

Remark. In Ref. 2, Analysis of Several Experiments Section, it was
mentioned that, when x' = «, the optimal length L* of the column tends to
zero, independent of the value of g. This statement appears to be inconsistent
with the conclusion that can be derived from Eq. (34) that, when both x’ = «
and g = +0, R, should increase with an increase of L (see Eq. 34). This
inconsistency arises from the fact that, in the argument in Ref. 2, the limit of
x'—+e a priori was considered whereas in Eq. (34) the limit of x'—x is
considered after the limit of g—+0 has been obtained. Actually, however,
the limit of x’—= and g—+0 is unrealizable; the formal mathematical
argument under the unrealizable situation has no practical meaning.
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3.9 A

3.8 4

3.7

1
0 1x1077 2x 107
Q(KQ) (M/cm)

FIG. 2. Representation, by greatly extending the abscissa scale, of the part of the curve for
L = 300 (cm) in Fig. 4 in an carlier paper (2) occurring when the slope, g g +), of the potassium
molarity gradient is extremely small. Thus the chromatographic resolution, R;. is plotted as a
function of g(k+) for a column of length 300 cm for the mixture of molecules with x’ =7 and
In = 6.7 (lysozyme model) and with x’ = 7 and In ¢ = 7.4. It can be seen that R increases very
slowly with a decrease of gx+, when gx+,2 1077 (M/cm); when gk < 1077,
R, decreases rapidly with a decrease of gk +), tending to a finite value when gk + tends to zero.
The arrow shows the limiting R values calculated from both Eqgs. (33) (or 33') and (34), which
cannot be distinguished from each other in the figure.

SOME NUMERICAL CALCULATIONS AND DISCUSSION

Due to the new interpretation given in Theoretical Section B to Eqgs. (12)
and (6), ambiguities can be eliminated from the results of earlier numerical
calculations in Ref. 2 obtained on the basis of these equations. These occur
for small s or L values (see Introduction Section and Theoretial Section B).
Typical examples of such ambiguities can be seen in both Figs. 1 and 2 in
Ref. 2 in which the theoretical dependence of the standard deviation g,y ¢, of
the chromatographic peak upon the length L of the column is shown. The
standard deviation is represented in terms of the range of molarities over
which the peak appears, and o+ is plotted for three different slopes, gk +),
of the potssium molarity gradient for several different model molecules. For
very small L values, o+ is incalculable, however (see Figs. 1 and 2 in Ref.
2).

Figure 1 illustrates results of recalculations of (some of) the ambiguous
parts of both Figs. 1 and 2 in Ref, 2 carried out on the basis of the new
interpretation for Egs. (12) and (6) (see above); ok +,in Fig. 1 is concerned
with the part of the total chromatogram from which the infinitesimal peak
occurring at the beginning (m+,= mx+,) of the potassium gradient is
eliminated (sce Theoretical Section B). Thus Fig. 1 shows the dependence of
o+, upon L for three slopes, g +), of the potassium gradient for molecules
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with different effective dimensions x’. For the diffusion parameter §,, the
best value, 0.3 cm (see Ref. 2), is used. (For details, sce the legend of Fig. 1.)
It can be seen in Fig. 1 that, when x’ is finite, ok +), in general, increases with
a decrease of L unless L is extremely small. o+, finally decreases, however,
with a decrease of L, tending to zero when L tends to zero. When x' is large
(but not infinite), the final decrease in o+, with a decrease of L occurs to
such smal values of L that it cannot explicitly be drawn in Fig. 1 (see the
curves for x’ = 70). From the combination of Fig. 1 and Figs. 1 and 2 in Ref.
2, a general conclusion can now be reached that, with a decrease of L, o+,
decreases, increases, and again decreases, tending finally to zero when L
tends to zero. When x’ = <, however, o+, decreases monotonically with a
decrease of L, resulting in a parabola for each g+, (see the curves forx’ = «
in both Fig. 1 in this paper and Fig. 2 in Ref. 2).

Concerning the other figures in Ref. 2, virtually identical patterns can be
obtained even on the basis of the present theory. However, the limiting values

lim R, of the chromatographic resolution R, in Figs. 4, 7, and 10 in Ref.
g(K+)~10
2(car)1 easily be calculated from Eq. (33), (33’), or (34) in Theoretical Section
C. For instance, for the mixture with x’ = 7 in Fig. 4 in Ref. 2, we obtain,
from Eq. (33) or (33"), li+m R, =0.686, 1.534, and 3.757 when L = 10,

g(K")—~+0
50, dand 300 cm, respectively. These values are essentially equal to the
corresponding values 0.687, 1.535, and 3.761 calculated from the ap-
proximate equation Eq. (34). In Fig. 4 in Ref. 2 it can be seen, however, that
the corresponding values are slightly larger. This is due to the fact that R, is
general, decreases slightly but very rapidly just before g+, tends to zero.
This aspect is drawn in Fig. 2 for the case when L = 300 cm by extending
extremely the abscissa scale in Fig. 4 in Ref. 2. In Fig. 2 the arrow shows the
limiting R, values obtained from both Egs. (33) (or 33’) and (34), which
cannot be distinguished from each other. From a practical point of view, the
slight decrease in R; occurring in extremely small g+, values is of no
importance. The simplest equation, Eq. (34), is useful for the approximate
estimations of R, values that would correspond to minimum practically
attainable g+, values (see Fig. 4 in Ref. 2).
Similar arguments can be made for both Figs. 7 and 10 in Ref. 2.

Acknowledgments

The author is grateful to Dr. G. Bernardi for his interest in this work. the
calculations for both Figs. 1 and 2 were performed on CDC 6600 computer
of the Faculty of Sciences, University of Paris.



13:43 25 January 2011

Downl oaded At:

336

REFERENCES

. Kawasaki, Separ. Sci. Techol., 16, 325 (1981).

. Kawasaki, Ibid., 16, 439 (1981).

. Kawasaki, Ibid., 16, 817 (1981).

. Kawasaki, /bid.,, 16, 885 (1981).

. Kawasaki, A Theory of Stepwise Chromatography,” Ibid.. In Press.
. Kawasaki, Ibid., 17, 337 (1982).

. Kawasaki, J. Chromatogr., 120, 271 (1976).

. Kawasaki, /bid., 161, 15 (1978).

Co N Ok o~
Hd ===

Received by editor February 9, 1981

KAWASAKI



