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SEPARATION SCIENCE AND TECHNOLOGY, 17(2), pp. 319-336, 1982 

Gradient Hydroxyapatite Chromatography with Small 
Sample Loads. V. Effect of the Top of the Column 

TSUTOMU KAWASAKI 
LABORATOIRE DE GENETIQUE MOLECULAIRE 
INSTITUT DE RECHERCHE EN BIOLOGIE MOLECULAIRE 
FACULTE DES SCIENCES 
PARIS 5 ,  FRANCE 

Abstract 

The earlier theory of gradient hydroxyapatite chromatography with small sample 
loads is further developed by taking into account the effect of the top of the column. 
The ambiguity in the theory occurring when the value of the parameters is extremely 
small is eliminated. The resolving power of the column is discussed at the limit when 
the slope of the gradient tends to zero. 

INTRODUCTION 

In earlier papers (1-4) a theory of gradient chromatography on hydroxy- 
apatite (HA) columns was developed for the case of small sample loads when 
a narrow band of molecules is formed initially at the top of the column. The 
process of chromatography is virtually a quasi-static process; a thermo- 
dynamic equilibrium is locally realized within any elementary volume, SV, in 
the column at any instant t ( 1 ) .  In the quasi-static process, longitudinal 
diffusions of both sample molecules and competing ions can be assumed to 
occur, caused essentially only by the local heterogeneity in the flow rate 
occurring in the column; the ions constitute a linear molarity gradient in the 
column (1). However, the molarity gradient itself is not disturbed by diffusion 
since the diffusion effect is canceled out among different parts of the gradient 

The gradient chromatographic process is indescribable on the basis of a 
continuity equation for the actual molecular flux occurring in the column (3). 
In order to describe this process it is necessary to stand on a new point of 
view. From this point of view [called the second point of view on gradient 

(1, 3 ) .  
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320 KAWASAKI 

chromatography (S)J it is not the column but rather the molarity gradient of 
competing ions (actually migrating on the column) that a priori is fixed, and 
this latter is considered as a medium through which migrates a molecular flux 
(3). In contrast to the actual flux in the column, this flux is only endowed with 
an abstract meaning since molarity m of the ions chromatographically 
represents a “force” that drives sample molecules out of the crystal surfaces 
of HA [through a Competition mechanism; see Ref. 1 (Appendix I)  and Ref. 31. 
In other words, the lattcr flux migrates in an “intensive space” of the “force” 
(3). Further, the abstract flux is different from the actual flux in that the 
density C of the former corresponds to the concentration of molecules in the 
interstitial liquid in the column (i.e., the mobile phase) whereas the density 
SZ of the latter represents the molecular density in the interstices, including 
the crystal surfaces, in the column [i.e., both mobile and stationary phases 

In Ref. 3 a continuity equation for the abstract flux has been derived from 
which a chromatogram can be calculated. This equation involves, as 
variables, both “position” m on the molarity gradient and parameters which 
is proportional to time t provided the flow rate in the column is constant with 
respect to t (see Eq. 1). With gradient chromatography, the meaning of the 
“chromatogram” is the distribution in concentration C of molecules in 
solution that has just been eluted out of the column with length L ,  represented 
as a function of molarity m of competing ions in the solution eluted at the 
same time out of the column. m increases linearly with an increase in elution 
volume V (with linear gradient chromatography), and V is proportional to 
time t provided the flow rate is constant with respect to 1. This means that m 
increases Zinearlji with I .  It can now be understood that two steps are 
involved in the process of the calculation of the chromatogram starting from 
the abstract continuity equation. Thus, in the first step, a solution, C(s, m) ,  of 
the abstract continuity equation is obtained under a suitable initial condition. 
In this step, based on the second point of vicw (see above), the’solution 
C(s, m) only has an abstract meaning. In the second step a transfer is made 
from the second point of view to another, called the first point of view. From 
this point of view it is the column itself, and not the molarity gradient of the 
ions, that a priori is fixed (3). By this transfer of the point of view the 
meaning of time (relatively speaking) that was given to s (see above) is 
translated into a meaning of the product of length L of the column and slopeg 
of the molarity gradient (eq. 2). Since g is constant with linear gradient 
chromatography, it can now be considered that s represents the length of the 
column (relatively speaking); it is m that increases with time t .  Thus the 
meaning of a chromatogram is given to C(s, m) (for details, see Ref. 3 ) .  

The point of argument in the present paper is concerned with the initial 
boundary condition to the abstract continuity equation. In the earlier theory 
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GRADIENT HYDROXYAPATITE CHROMATOGRAPHY. V 321 

(1-4),  an assumption was introduced that the initial boundary condition can 
be given (a) replacing the actual column by a hypothetical column with 
infinite length that extends upward beyond the top of the column (cf. Remark 
1 below), and (b) representing the initial narrow band of molecules occurring 
at the top of the column in terms of a delta function that has a value only at a 
longitudinal position, L = 0, on the infinite column. Under this assumption, 
however, an unreasonable conclusion is attained that, when the value of the 
parameters (see above and Eq. 2) is extremely small, the left-hand part of the 
chromatogram should, in general, be eluted out of the column even before the 
application of the gradient. This occurs independently of whether or not 
rinsing the column is made between the sample load and the application of 
the gradient by using the initial solvent [ ( 4 ) ;  cf. Remark 2 below]. In Ref. 4 a 
limit in the theory occurring in this extreme experimental condition was 
discussed. Further, the experimental chromatograms, in general, are slightly 
asymmetrical, with a slower decrease in height on the right-hand side of the 
pattern than on the other side. On the other hand, with theoretical chromato- 
grams obtained under the assumption of the delta function occurring initially 
on the infinite column (see above), it is on the left-hand side of the pattern 
that the height decreases more slowly, although the difference in rates of 
decrease in height between the two sides of the chromatographic peak is 
extremely small, and the peak is almost symmetrical (2, 4 ) .  In Ref. 2 it was 
suggested that this slight difference between the theoretical and experimental 
results also arise from the introduction of the delta-function. 

In an earlier paper ( 5 )  a theory of stepwise elution chromatography was 
developed in which account was taken of the existence of the top of the 
column. It can, in general, be assumed ( 5 )  that thermal Brownian diffusion of 
molecules in the interstitial liquid in the column occurs only in association 
with a diffusion that is provoked by a type lcalled the second type ( 5 ) ]  of flow 
heterogeneity. The effect of the column top is conceivable only in terms of the 
effect of Brownian diffusion plus diffusion due to the second type of flow 
heterogeneity (called, hereafter, B-dif. plus STFH-dif.) occurring near the 
top of the column ( 5 ) .  In both the present and the subsequent paper (6) this 
consideration of stepwise chromatography is applied with modifications to 
gradient chromatography. 

In the present paper only the extreme case when the B-dif. plus STFH-dif. 
effect tends to zero is treated. Under this situation, longitudinal diffusion in 
the column is limited to a diffusion occurring, and caused by another type 
(called as the first type) of flow heterogeneity ( 5 ) ,  which is identical with the 
flow heterogeneity considered in the earlier theory of gradient chroma- 
tography [(Z-4); cf. Remark 3 below]. Thus, instead of the infinitesimal 
molecular band occurring at positon L = 0 on the infinite column which is 
represented by using a delta-function ( 1 - 4 ,  an infinitesimal band occurring 
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322 KAWASAKI 

at the top of the column is considered. This latter is conceivable only in terms 
of an extreme case when B-dif. plus STFH-dif. tends to zero at the column 
top. A similar consideration for stepwise chromatography was made in Ref. 
5 ,  Theoretical Section E. A conclusion is derived that the shape of the 
chromatogram calculated from the present theory is identical with that 
obtained earlier (1-3). However, the ambiguity in the earlier theory (1-4) 
occurring in extremely small s values (see above), is eliminated. Chromato- 
graphic resolution R , ,  occurring at the limit when the slopeg of the molarity 
gradient tends to zero, is also discussed (Theoretical Section C). 

In the subsequent theory (6) .  account is taken of the finite effect of B-dif. 
plus STFH-dif. Theoretical chromatograms with slightly asymmetrical 
shapes, similar to those obtained experimentally (see above), can be cal- 
culated (6). For this purpose, however, it is first necessary to reduce the 
fundamental continuity equation (Eq. 1) to a simpler form (6). 

Remark (I). In Refs. 1-4 the statement that the hypothetical column 
extends upward beyond the top is made only implicitly, however. The 
hypothetical column also extends downward beyond the bottom of the actual 
column. With the quasi-static chromatographic process (see aboe), it can, in 
general, be assumed ( 1 )  that density C of sample molecules and molarity m 
of competing ions in solution that has just been eluted out of the bottom of the 
column with length L are equal to the density and the molarity in the 
interstitial liquid that has just passed the longitudinal positon L in the infinite 
column, respectively. This assumption is necessary in order for C(s, m) that 
has been calculated from the abstract continuity equation to have meaning 
for the chromatogram (I, 3 ) .  The assumption is applicable to some wider 
cases (5,  6). 

Remark (2). Since s =gL (Eq. 2), s can be small when eitherg or L is 
small. However, from the structure of the fundamental continuity equation 
(Eq. l ) ,  it can be understood that the unreasonable theoretical result mainly 
arises from the small L valuc. Thus, in Eq. ( l ) ,  the diffusion parameter 8, is 
involved within the term gB,JB(s, m) ,  which constitutes as a whole the 
apparent diffusion coefficient. Wheng is small,g8dB(s, m) is also small and 
diffusion decreases. This prevents the leak of molecules out of the beginning 
of the gradient. 

Remark (3).  In the theory in Refs. 1-4 the effect of the second type of flow 
heterogeneity a priori is neglected. This procedure is necessary in order for 
the initial boundary condition of the fundamental continuity equation (Eq. 1) 
to be represnted in terms of a delta function (i.e., for the initial molecular 
band on the column, in fact, to have an infinitesimal width). Some comment 
on this problem is made in Remark 2 in Ref. 5 ,  Theoretical Section A. The 
assumption of a quasi-static chromatographic process, in which longitudinal 
thermal Brownian diffusion is negligible in comparison with diffusion due to 
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GRADIENT HYDROXYAPATITE CHROMATOGRAPHY. V 323 

the total flow heterogeneity (see above), arises from the experimental fact 
that virtually no deformation of the chromatogram or the change in elution 
position occurs when the flow rate is changed ( I ) .  Even though a finite effect 
of B-dif. plus STFHdif .  is actually occurring, the assumption of the quasi- 
static process is valid provided that, for the B-dif. plus STFH-dif. effect, it is 
the second type of flow heterogeniety that plays a major role (cf. Discussion 
Section in Ref. 6). 

THEORETICAL 

A. Some Consideration on the Earlier Theory (1-4): 
A Specification of the Initial Boundary Condition to the 
Fundamental Continuity Equation 

The fundamental continuity equation for the abstract molecular flux 
obtained earlier (Eq. 17 in Ref. 3;  see Introduction Section) can be written as 

where m = mean molarity of competing ions in solution within a vertical 
section of the column. By connection m occurring within respec- 
tive column sections, the molarity gradient can be defined; this is 
linear with linear gradient chromatography. However, the ab- 
stract flux itself is a concept that belongs in the second point of 
view on gradient chromatography (Introduction Section). From 
this point of view, m simply represents the current coordinate 
along which the abstract flux proceeds. 

g = positive constant representing the slope of the linear gradient of 
m .  This is expressed as an increase in m per unit length of the 
column, measured from the bottom to the top. 

s = parameter with a dimension of molarity. From the first point of 
view on gradient chromatography (Introduction Section), this can 
be defined as 

s = g L  ( 2 )  
where L represents the length of the column. From the second 
point of view (i.e., in the abstract flux itself), however, s is a 
variable that increases with time t ;  s is proportional to t provided 
the flow rate is constant with respect tor.  Therefore, providedg is 
given, fixing time t in the abstract flux (second point of view) 
means fixing length L of the column (first point of view). 
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324 KAWASAKI 

C = mean concentration of sample molecules in solution in a vertical 
section of the column. From the first point of view, C represents 
the molecular density in solution that has just passed a given 
logitudinal position L on the infinite column. This can be 
assumed to be identical with the molecular density in solution 
that has just been eluted out of the column with length L (see 
Remark ( I )  in the Introduction Section). This means that, when 
both L and g are given, C represents a chromatogram as a 
function of m.  From the second point of view, however, C simply 
represents the molecular density in the abstract flux occurring at 
“position” m at “time” s .  

Bo = positive constant with a dimension of length that measures 
longitudinal diffusion provoked by the first type of flow hetero- 
geneity in the column. 

B(s, m )  = ratio of the amount of molecules existing in the interstitial liquid 
to the total amount in a vertical column section, i.e., partition of 
molecules in solution. 

The function B(s, m )  is represented as 

B ( s ,  m )  = BJmA(s ,  m ) l  ( 3 )  

where the function BA(mJ is defined by Eq. (A-1) in Ref. I ,  Appendix I, as 

in which 

The function mA(s, m )  is implicitly defined as 

rn = m A  + r ( m A )  - s ( 6 )  
where 

The physical meanings of the symbols involved in Eqs. (3)-(7) are sum- 

mi” = initial molarity of competing ions at the beginning of the 
molarity gradient introduced at the top of the column. 

mA(s. m )  = local molarity of competing ions in solution occurring in an 
infinitesimal part of the vertical column section. Based on the 

marized below: 
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GRADIENT HYDROXYAPATITE CHROMATOGRAPHY. V 325 

second point of view, the value of mA is determined when both 
“time” s and “position” m on the molarity gradient are 
given, “position” m corresponding to the mean molarity of the 
ions in the column section. 

Bx(mx) = partition of molecules in solution occurring locally in the 
infinitesimal part of the column section where the molarity of 
competing ions is mi. Equation ( 3 )  shows that the mean 
partition B is equal to the local partition BA. This apparently 
occurs on the basis of the hypothesis that the effect of B-dif. 
plus STFH-dif. should be canceled within the molecular band 
migrating on the column. Arguing in the other direction, this is 
the reason why the B-dif. plus STFHdif.  effect, in fact, is 
finally negligible. [See the argument in Ref. 3, Theoretical 
Section, where thermodynamic diffusion (identical with 
Brownian diffusion) is considered instead of B-dif. plus STFH- 
dif. This argument is valid, however; cf. Remark 3 in the 
Introduction Section and Remark 2 in Ref. 5 ,  Section A]. 
Equation (4) shows that BA increases monotonically with an 
increase of mA, tending to unity when m h  tends to infinity. 

v, = positive constant representing the property of competing ions. 
p = positive constant representing the property of the column. 
x‘  = average number (in the equilibrium state) of adsorbing sites of 

HA on which the adsorption of competing ions is impossible 
due to the presence of an adsorbed molecule. x ’ ,  therefore, 
represents the effective dimensions of the sample molecule. 

x = average number (in the equilibrium state) of functional groups 
per molecule that react with sites of HA. 

- E  ( E  > 0) = adsorption energy of a functional group of the molecule onto 
one of the sites of HA. - X E  therefore represents the energy per 
molecule on the HA surface. 

r = number of effective geometrical configuration(s) of a molecule 
on the HA surface (in the equilibrium state). Therefore 

Q = - k T ( l n  q - In p )  = - X E  - kT In r ( 8 )  
represents the free energy per molecule on the HA surface 
(neglecting a solvent effect). 

In Ref. 3 the initial boundary condition to Eq. (1)  was represented by using 
a delta-function as 

Iim R = 6(m - mi“) 
s - + o  

mA-mln 

(9) 
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326 KAWASAKI 

(see Eq. 74 in Ref. 3) where 

R = CIB 
represents the total molecular density in the interstices, including the crystal 
surfaces, of a vertical column section. Equation (9) symbolically represents 
the situation occurring at time 0 when both relationships s = 0 and mh = m,, 
are fulilled at position L = 0 of the infinite column on which the ion molarity 
rn is extending in an infinite range of [-m, m ]  (cf. Remark below). However, 
if R is considered as a function ofs and r (Eq. 7), Eq. (9) should be rewritten 
as 

( 1  1) 

since Eq. (6) shows that, both when s = 0 and mh = rn = mi,, then r = 0. 
Under the boundary condition given by Eq. (9) or ( 1 1 ), Eq. ( I ) has a solution 

R(s  = +o, r )  = 6 ( r )  

IrI r n i ( s .  m ) I  - s /  

(cf. Eq. 62 in Ref. 3). 
Now, by using Eqs. (6) and (7), Eq. (12) can be rewritten as 

(cf. Eq. 79 in Ref. 3). As long as s is fixed, Eq. ( I  3) can further be rewritten 
as 

( r  s ) *  -- 

1 ~ R O O ~  
C d m =  , e d r  

J47Tg9os 

On the other hand, by using Eqs. (3), (lo), and ( 12), 

( r - s ) 2  

is derived. It can be verified that Eq. (1  5), in fact, fulfulls Eq. (1 1). By using 
Eq. (1 5 ) ,  Eq. (14) can be rewritten as 
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c = . [ - 3  5 

This means that the boundary condition (Eq. 9 or 1 I )  to Eq. (1 )  can finally 
be specified as 

C(s = +0, m )  = 6 ( m  - mi,) ( 1 7 )  
Remark. Therefore, mxis also extended in the range of [-a, 471. Equation 

(4) only defines the actual Bx occurring when mA 2 mi,. The hypothetical Bx 
occurring when rnx < mi,  can be defined, for instance by Eq. (76) in Ref. 3, 
as 

r is now extended in the infinite range of 1-00, w ]  that corresponds to the 
range [ - m ,  m ]  for mx and m (see Eqs. 7 and 11-16). 

B. Effect of the Top of the Column* 

From its mechanism, it can be assumed that the first type of flow 
heterogeneity cannot occur near the top of the column (see Ref. 5 ,  
Theoretical Section D). It can also be asumed (5) that, within the small width 

A L  = 48, ( 1 8 )  
at the column top (where the effect of the first type of flow heterogeneity is 
negligible), molecules migrate virtually at random, receiving the B-dif. plus 
STFHdif .  effect. a,, with a dimension of length, is a positive constant 
measuring this effect ( 5 ) .  As with the derivation of Eq. ( 17) or ( 17') in Ref. 5 
for stepwise chromatography, let us consider the case when the width in the 
initial molecular band occurring at the column top is smaller than, or equal 
to, the critical width AL,  and further when the partition B (Eq. 3)  of 
molecules in solution occurring in any column section within AL is very 
small. This latter is a necessary condition for molecules to be initially 
retained on the column (cf. Remark in Ref. 5 ,  Numerical Calculations of 
Idealized Chromatography in the Absence of the First Type of Flow 
Heterogeneity and Discussion Section). Under this situation a much larger 
volume of the solvent than the total interstitial volumes 

AL' = a A L  ( 1 9 )  
*The consideration made in this section partially originates in the considerations made in both 

Ref. 7 and Appendix I1 in Ref. 8 .  
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328 KAWASAKI 

within AL (where a represents the pore volume per unit length of the column) 
would pass AL while (almost) all molecules are eluted out of AL. ( 5 ) .  This 
would mean that the amount of molecules that are eluted out of AL. while a 
volume AL.‘ of the solvent passes is virtually equal to the mean amount of 
molecules that stay in the mobile phase in AL, during this time interval (5 ) .  
This hypothesis can be represented in terms of a differential equation 

X ( 2 0 )  
- d X  = c =  B ( m  1 

d (  V I A L ’ )  1 - B ( m )  

where V is the elution volume. C is defined here as the total amount of 
molecules existing in the interstitial liquid in AL.  However, we represent C in 
such a unit that it is numerically equal to the molecular concentration in 
solution occurring at longitudinal position L = AL, on the column (i.e., the 
position the distance AL. apart from the top). At positions L > hL, C is 
always defined as the molecular concentration in the interstitial liquid in the 
column. This definition is applied to C in Eq. (1). x represents the total 
amount of molecules existing on the crystal surfaces in AL,. As with C ,  
however, x also represents the molecular density on the crystal surfaces at  
position L = AL. Finally, B(m) represents the partition of molecules in 
solution occurring in AL,. This is equal to B(s,  m )  (Eq. 3)  occurring in the 
infinitesimal column scction at position L = AL.  From the second equality 
in Eq. (20) and Eq. (lo), a general relationship among the three quantities R ,  
C ,  and x ,  

R = C + x  ( 2 1 )  

can be obtained. (It is possible to addx, the meaning of the molecular density 
on the crystal surfaces at column positionsL > AL.. It is also possible to add 
R. the extensive meaning of the total amount of molecules in AL. )  

In comparison with Eq. (17) in Ref. 5 for stepwise chromatography in 
which it is R that changes with V/AL’, in Eq. (20) above it is x that changes. 
(although actually x = R; see above). This is due to the fact that, with gradient 
chromatography, it is x ,  and not R, that decreases directly with an increase in 
m which represents the “force” that drives molecules out of the crystal 
surfaces (Introduction Section; see Ref. 3 Theoretical Section); V increases 
with m (Introduction Section). In  fact, since 

dmldV = g / a  ( 2 2 )  

(which gives a definition itself ofg;  see the explanation of Eq. l) ,  Eq. (20) 
can be rewritten by using Eqs. ( 1  8) and ( 1  9) as 
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It is Eq. (23) rather than Eq. (20)  that has a fundamental physical meaning 
(cf. Ref. 3,  Theoretical Section). 

Equation (23) can easily be integrated under a normalized conservation 
conditon 

JmInC dm = 1 

to give 

which can be rewritten as 

c=- 1 B ( m  1 
4g8, 1 - B ( m )  

( 2 5 ' )  
On the other hand, from Eqs. ( 3 )  and (7) and the equality betweenB(m) and 
B(s, m )  occurring when L = 48, (see above) or when s = 4go0 (Eq. 2),  a 
relationship 

is obtained. In Eq. (26) the expression r (m)  for r should be avoided. In fact, if 
we give B ( m )  the meaning of B(s, m )  occurring when s = 4gaO (see above), 
then r should be written as r[mA(s = 4gO0, m ) ]  rather than r(m).  This is 
because r originally is defined by Eq (7), and m A  is a function ofs  and m (Eq 
6) .  r in Eq. (26)  is different from r(mA = m ) .  Now, by using Eq. (26) ,  Eq. 
(25') can further be rewritten as 

r -~ 
1 c = ~ [ $1 e 4'80 ( form 2 m,,,) 

c=o (for m <mi,) 

4 d O  s=4gt? 

and 

where the second equality has been added only for convenience sake. Here, 
let us introduce the hypothesis that the B-dif. plus STFHdif .  effect tends to 
zero (Introduction Section). This means that 8,- 4-0. Under this situation, 
Eq. (27) is identical with Eq. (1  7). Under the boundary condition given by 
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Eq. (17), Eq. (1) has a solution of Eq. (12). According to the earlier theory 
(1 -4 ,  Eq. (12) should represent a theoretical chromatogram with Eq. (6) 
(see Introduction Section). Equation (12) (with Eq. 6) shows, however, that 
when s is extremely small, the left-hand part of thc chromatogram should be 
eluted out of the column even before the application of the molarity gradient. 
This is an unreasonable conclusion (see Introduction Section). 

It should be emphasized, however, that it is the first equality in Eq. (27) 
that involves the physical meaning. At the limit of 8- +0, this represents the 
infinitesimal molecular band occurring initially at the fop of the column. It is 
only by adding the second equality that Eq. (27) coincides with the delta 
function (Eq. 17). An interpretation should now be introduced that, in Eq. 
( 12), it is the part m 2 m ,, of C that has the physical meaning; the other part, 
m < m,,, that formally occurs in Eq. (12) actually should occur at the 
beginning, m = m,,, of the molarity gradient forming a sharp peak. This peak 
gradually disappears in early stages of the development process. The 
corresponding argument for stepwise chromatography was made in Ref. 5 
Theoretical Section E .  In contrast to stepwise chromatography in which the 
band at the column top keeps the infinitesimal width as long as it remains (see 
Ref. 5 Theoretical Section E), with gradient chromatography it can be 
assumed that the width in the sharp peak at the beginning of the molarity 
gradient (which initially was infinitesimal at the top of the column) increases 
slightly with the development process. This occurs in association with 
diffusion at the beginning of the gradient (3). However, the peak under 
consideration actually survives only in the early stages of the development 
process when the difussion at the beginning of the gradient has just begun. 
Further, in these stages the total width in the chromatogram (in which is 
involved, as part, the sharp peak) increases rapidly (cf. Fig. 1). As a result, 
the width in the sharp peak at the beginning of the gradient can be considered 
to bc virtually infinitesimal. 

C. Chromatographic Resolution, R,, at the Limit of g-+O 

In Ref. 4 it was shown that, provided the molarity range over which a 
chromatogram appears is small around the mean elution molarity p, Eqs. 
(12) and (6) reduce to a single equation with a Gaussian form: 
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p;-. . 

- _  - _  - - _ _  X ’ Z  7 0  .-. - -_ .  -. - -  . . . --. 5 

\ 
-1 
. . . 

0 I 2 3 1  
L ( c r n 1  

FIG. 1 .  Recalculations of (some of) the ambiguous parts of both Figs. 1 and 2 in an earlier paper 
( 2 )  occurring when the length L of the column is small. The dependence of the standard 
deviation, a ( ~ + ) ,  of the theoretical chromatographic peak upon L is shown; the standard 
deviation is represented in terms of the range of molarities of competing potassium ions over 
which appears the peak, and u(K+)  is concerned with the part of the total chromatogram from 
which the infinitesimal peak occurring at the beginning ( m ( ~ + )  = m,n(K+) )  of the potassium 
gradient is eliminated. u(K+) is plotted for three different slopes,g(r+), ofthe potassium molarity 
gradient [ l . l S X  10-3 ( - ) , 4 .24X IOw4(- - )and  3.53 X 10- (--)Aflcmjforthreediffer- 
ent molecules with x’ = 7 and In q = 6.7 (lysozyrne model), with x’ = 70 and In q = 100.3, and 
with x ’  = and In q = =. For the diffusion parameter 80, the best value, 0.3 cm, is used. For 
any curve, u(K+) tends to zero when L tends to zero. For the three curves for x’ = 70, however. 
the decrease in u(K+)  with a decrease of L occurs in such small values of L that this aspect 
cannot explicitly be drawn in the figure. The three curves for x ‘  = m are parabolas. 
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where 
I 

and 

(see Eq. 4). Since the width (concerning m) in the chromatogram tends to 
zero when s tends to zero (Section B), Eq. (28) should hold precisely for 
extremely small s values. For small s values, Eq. (29) reduces to 

which shows that, when s-+0, then p - m , ,  + 0. 
s tends to zero when eitherg orL tends to zero (Eq. 2; cf. Remark 2 in the 

Introduction Section). We here consider the chromatographic resolution R ,  
occurring when g tends to zero and L is constant (for R,, see Ref. 2). Under 
this situation, the diffusion occurring at the beginning of the molarity gradient 
(see Section B) is negligible since, when g-+0,  the volume of the solvent 
over which a chromatogram appears is infinity. We also limit ourselves 
within the case of a mixture of components "1" and ''2" with the samc 
effective molecular dimensions x' (for x ' ,  see the explanation of Eqs. 3-7). 
The rcsolution R,< at the limit of g -, +O can be defined as 

where the two subscripts refer to the two components in the mixture (cf. Eq. 1 
in Ref. 2). In the distribution C in Eq. (28), it is only the part m 2 mi, that 
has physical meaning (see Section B). Equation (28) shows, however, that 
when s tends to zero, then C tends to a delta function occurring at 
m = p = mi,. This means that, at the limit of s-+0, the total distribution C 
in Eq. (28) coincides with its significant part m 2 m,,; lim R, would, in fact, 
be definable in terms of Eq. (32). Now by using Eqs. (30) and (31) and 
taking into account Eq. (2), Eq. (32) can be rewritten as 

g-+O 
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or as 

Let us consider an extreme case when x’-- and -Q,2,  lx’ = constant 
(> 0; for Q,,,, see Eq. 8). This means that the dimensions of any molecules in 
the mixture are infinity, but that the free energy per unit molecular dimen- 
sions on the H A  surface is finite (i.e., not equal to zero), at least concerning 
Component “2.” A proof is given below that, under this situation, a 
relationship q(2,>> ( q’mi,, -I- is fulfilled. As a result, Eq. (33’) reduces to 

I q ( l )  I 
1 -- 

ProoJ.: Since -Q,,, = (see above), Component “2” is perfectly retained 
at the top of the column at the beginning of chromatography where the 
relationship m = mi”  is fulfilled. This verifies the fact that the mean elution 
molarity p- (2 )  of Component “2” is higher than mi”.  In other words, if s f 0, 
then p ( 2 ,  > mi,,, it follows from this that ( p ’ ~ ( ~ )  + 1)‘’ >> (p’rnin + l)x’. 
Equation (29) reduces to ( ~ ’ p ( ~ )  + l)-r’ TZ q(2pp‘x’ x q(2) ,  where the second 
approximate equality arises from the fact that q = pe-Q‘k7’(Eq. 8) and that 
-Q = O(x’) (see above). This means that the factor sp‘x‘ that is involved in 
the intermediate term in the approximate equation (where x‘ = m) is virtually 
equal to unity when s # 0. Hence the relationship q(2) B (p’mi,, + 1)”’ is 
obtained. 

Practically, Eq. (34) gives a very good approximation for Eq.  (33) or (33‘) 
(cf. Fig. 2). 

Remark. In Ref. 2, Analysis of Several Experiments Section, it was 
mentioned that, when x’ = 00, the optimal length L* of the column tends to 
zero, independent of the value ofg.  This statement appears to be inconsistent 
with the conclusion that can be derived from Eq. (34) that, when bothx’ = m 

and g = +0, R, should increase with an increase of L (see Eq. 34). This 
inconsistency arises from the fact that, in the argument in Ref. 2 ,  the limit of 
x ’ + ~  a priori was considered whereas in Eq. (34) the limit of x’-m is 
considered after the limit of g- +O has been obtained. Actually, however, 
the limit of x’+“ and g-+O is unrealizable; the formal mathematical 
argument under the unrealizable situation has no practical meaning. 
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FIG. 2. Representation, by greatly extending the abscissa scale, of the part of the curve for 
L = 300 (cm) in Fig. 4 in an carlier paper ( 2 )  occurring when the s l o p e , g ( ~  t ).of the potassium 
molarity gradient is extremely small. Thus the chromatographic resolution, R,. is plotted as a 
function Ofg(K+) for a column of length 300 cm for the mixture of molecules with x' = 7 and 
In = 6.7 (lysozyme model) and withx' = 7 and In q = 7.4. It can be seen that R,  increases very 
slowly with a decrease of g ( K + )  when g ( K + ) >  
R, decreases rapidly with a decrease ofg(Ki ), tending to a finite value Wheng(K+) tends to zero. 
The arrow shows the limiting R, values calculated from both Eqs. (33 )  (or 33') and (34). which 
cannot be distinguished from each other in the figure. 

( M / c m ) ;  when g(K+)s< 

SOME NUMERICAL CALCULATIONS AND DISCUSSION 

Due to the new interpretation given in Theoretical Section B to Eqs. ( 12) 
and ( 6 ) ,  ambiguities can be eliminated from the results of earlier numerical 
calculations in Ref. 2 obtained on the basis of these equations. These occur 
for small s or L values (see Introduction Section and Theoretial Section B). 
Typical examples of such ambiguities can be seen in both Figs. 1 and 2 in 
Ref. 2 in which the theoretical dependence of the standard deviation ( T ( ~  4 of 
the chromatographic peak upon the length L of the column is shown. The 
standard deviation is represented in terms of the range of molarities over 
which the peak appears, and r J ( K t )  is plotted for three different slopes,g[, t ), 

of the potssium molarity gradient for several different model molecules. For 
very small L values, ( T ( ~  t ) is incalculable, however (see Figs. 1 and 2 in Ref. 

Figure 1 illustrates results of recalculations of (some of) the ambiguous 
parts of both Figs. 1 and 2 in Ref, 2 carried out on the basis of the new 
interpretation for Eqs. (12) and ( 6 )  (see above); a ( K t )  in Fig. 1 is concerned 
with the part of the total chromatogram from which the infinitesimal peak 
occurring at the beginning (m(K+)  = M , , ( ~ + ] ) )  of the potassium gradient is 
eliminated (SCC Theoretical Section B). Thus Fig. 1 shows the dcpcndence of 
( T ( K t )  upon L for three slopes, g(K-). of the potassium gradient for molecules 

2) .  
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with different effective dimensions x’. For the diffusion parameter 8,, the 
best value, 0.3  cm (see Ref. 2), is used. (For details, see the legend of Fig. 1 .) 
It can be seen in Fig. 1 that, when x’ is finite, a(K+), in general, increases with 
a decrease ofL unless L is extremely small. ‘ J ( ~ - )  finally decreases, however, 
with a decrease of L ,  tending to zero when L tends to zero. When x’ is large 
(but not infinite), the final decrease in u(Kt) with a decrease of L occurs to 
such smal values of L that it cannot explicitly be drawn in Fig. 1 (see the 
curves forx’ = 70).  From the combination of Fig. 1 and Figs. 1 and 2 in Ref. 
2,  a general conclusion can now be reached that, with a decrease o fL ,  
decreases, increases, and again decreases, tending finally to zero when L 
tends to zero. When x’ = 0 0 ,  however, decreases monotonically with a 
decrease ofL,  resulting in a parabola for eachg(K+) (see the curves forx’ = ~0 

in both Fig. 1 in this paper and Fig. 2 in Ref. 2). 
Concerning the other figures in Ref. 2, virtually identical patterns can be 

obtained even on the basis of the present theory. However, the limiting values 
lim R , ,  of the chromatographic resolution R ,  in Figs. 4, 7, and 10 in Ref. 

2 can easily be calculated from Eq. (33), (33’), or (34) in Theoretical Section 
C.  For instance, for the mixture with x’ = 7 in Fig. 4 in Ref. 2, we obtain, 
from Eq. (33) or (33’), R ,  = 0.686, 1.534, and 3.757 when L = 10, 

50, dand 300 cm, respectively. These values are essentially equal to the 
corresponding values 0.687,  1.535, and 3.761 calculated from the ap- 
proximate equation Eq. (34).  In Fig. 4 in Ref. 2 it can be seen, however, that 
the corresponding values are slightly larger. This is due to the fact that R, ,  is 
general, decreases slightly but very rapidly just before g ( K + )  tends to zero. 
This aspect is drawn in Fig. 2 for the case when L = 300  cm by extending 
extremely the abscissa scale in Fig. 4 in Ref. 2. In Fig. 2 the arrow shows the 
limiting R ,  values obtained from both Eqs. (33) (or 33’) and (34), which 
cannot be distinguished from each other. From a practical point of view, the 
slight decrease in R ,  occurring in extremely small g ( K + )  values is of no 
importance. The simplest equation, Eq. (34),  is useful for the approximate 
estimations of R ,  values that would correspond to minimum practically 
attainable g(,+, values (see Fig. 4 in Ref. 2) .  

g ( K ’ J -  ’ 

lim 
g( K ) - +O 

Similar arguments can be made for both Figs. 7 and 10 in Ref. 2. 
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